share

Use Case Image Recognition

Problem

In body and vehicle construction, a large number of workpieces are connected by means of solder joints. Solder joints are defective if they contain breaks or pores, for example. The suitability of soldered joints can largely be assessed optically. Can images of the soldered joints be assessed sufficiently well and sufficiently quickly using artificial intelligence? It should be noted that defective solder joints are clearly underrepresented in the training images compared to high-quality solder joints.

Solution

The images of the solder joints are suitably cut and centered. The imbalanced data set is enriched by means of suitable data augmentation. A neural network is trained on the training data set, which classifies solder joints into different categories based on the images (“good”, “contains breaks”, “contains pores”, “contains chip residues”, …). The artificial intelligence generated in this way is directly integrated into the production process in the form of an embedded system together with a camera solution. The overall system is constructed in such a way that expert feedback regarding classification and categories can be included. In this way, a gradually improving, self-learning system is created.

Benefits

  • Save time for manual quality checks
  • Save production costs
  • Increase in production quality by avoiding human errors

For a detailed demo of our solution, please contact us using the contact form below.

Get in touch

Are you interested in one of our use cases and would like to get in touch? In order to be able to approach you with more details concerning our use cases, please fill out the form.



We will send you a short confirmation email. By clicking on the link in the email you confirm that your email address is correct and that you would like to receive additional information on our use cases. You may withdraw your consent at any time.

With submission of this form you approve of our data privacy policy, which you can find here.


Contact

prognostica GmbH
Berliner Platz 6
D-97080 Würzburg
P: +49 931 497 386 0

Your partner for Predictive Analytics and Data Science.

You can find further information, among other things concerning data security, in our imprint and privacy policy.

Follow us!

© 2020 prognostica GmbH